Refine Your Search

Topic

Author

Affiliation

Search Results

Collection

Powertrains, Fuels & Lubricants - Fuel & Additive Effects on CI Engine Performance, 2012

2012-09-18
The 13 technical papers in collection present work investigating the effect of fuel composition on CI engine performance in terms of combustion efficiency, emissions and engine hardware durability. Variations in fuel composition include: the inclusion of aromatic compounds, the blending of oxygenated components and the use of additives for cetane number improvement and lubricity enhancement.
Collection

Powertrains, Fuels & Lubricants - Advanced Vehicle Technology Competitions, 2012

2012-09-18
The 13 technical papers in this collection cover the work done by student teams in the EcoCAR 2: Plugging in to the Future competition series, sponsored by General Motors and the U.S. Department of Energy. This includes powertrain architecture selection, control system modeling and simulation, and energy storage system design and component packaging.
Collection

Transmission and Driveline, 2013

2013-04-09
The 44 papers in this technical paper collection cover launch devices; components/subsystems; control; NVH; modeling; all-wheel drive; IVT/CVT; and transmission systems/drive units.
Collection

Load Simulation and Vehicle Performance, 2014

2014-04-01
This technical paper collection focuses on new theory, formulation and modeling of amplitude-, frequency- and temperature-dependent nonlinear components/systems such as rubber and hydraulic mounts or bushings, shock absorbers, and any joint friction/damping; dynamic characterization through lab and field testing; Linearization methodology; Model validation, application, and sensitivity analysis in vehicle system/subsystem simulations; Nonlinear system identification, modeling, and application in testing accuracy improvement, etc.
Collection

Load Simulation and Vehicle Performance, 2013

2013-04-09
The 43 papers in this technical paper collection focuses on new theory, formulation and modeling of amplitude-, frequency- and temperature-dependent nonlinear components/systems such as rubber and hydraulic mounts or bushings, shock absorbers, and any joint friction/damping; dynamic characterization through lab and field testing; Linearization methodology; Model validation, application, and sensitivity analysis in vehicle system/subsystem simulations; Nonlinear system identification, modeling, and application in testing accuracy improvement.
Collection

Load Simulation and Vehicle Performance: Multi-body Dynamics, 2015

2015-04-14
Focusing on multibody system modeling and simulation results, rigid and flexible body modeling, mount loads predictions for vehicle body, frame/sub-frame, leaf-spring, exhaust system, driveline, and powertrain, the comparison of modeling techniques between vehicle dynamics simulation and durability loads simulation, optimal development process considering vehicle dynamics and durability loads, data processing and analysis techniques, loads sensitivity analyses for various model parameters, DOE and optimal design techniques for loads minimization, prediction of manufacturing tolerance effects on loads, robust design methods, driver modeling, and FE-based system modeling.
Collection

Transmission Systems/Drive Unit, 2015

2015-04-14
This technical paper collection deals with the automotive transmissions of different types. It includes development of new transmission concepts, transmission enhancements and the advancement of the state of the art of transmission system design & integration with the objective of improving the transmission efficiency, NVH, durability and shift pleaseability.
Standard

FLIGHT SIMULATION TRAINING DEVICE (FSTD) – LIFE CYCLE SUPPORT

2019-10-16
CURRENT
ARINC434-2
This document will address measures pertaining to and directly associated with the maintainability and reliability of FSTDs throughout their entire life cycle, from initial specification and design to de-commissioning. Although the primary emphasis of this document is on full flight simulators (with motion and visual systems), it should be applicable in part or total to all FSTDs.
Standard

SIMULATED AIR TRAFFIC CONTROL ENVIRONMENTS IN FLIGHT SIMULATION TRAINING DEVICES

2020-08-31
CURRENT
ARINC439B
This document provides guidance on provision of SATCE systems in Flight Simulation Training Devices (FSTDs) for the benefit of flight crew training. This work builds upon that originally undertaken by International Air Transport Association (IATA) Flight Simulator Working Group in 2002, and further developed in the International Civil Aviation Organization (ICAO) Doc. 9625 Vol 1, Part 2, Editions 3 and 4. This document is intended to be a practical starting point that can serve as the basis for future developments of SATCE.
Journal Article

Driving Simulator Performance in Charcot-Marie-Tooth Disease Type 1A

2019-05-10
Abstract Introduction: This study evaluates driving ability in those with Charcot Marie Tooth Disease Type 1A, a hereditary peripheral neuropathy. Methods: Individuals with Charcot Marie Tooth Disease Type 1A (n = 18, age = 42 ± 7) and controls (n = 19; age = 35 ± 10) were evaluated in a driving simulator. The Charcot Marie Tooth Neuropathy Score version 2 was obtained for individuals. Rank Sum test and Spearman rank correlations were used for statistical analysis. Results: A 74% higher rate of lane departures and an 89% higher rate of lane deviations were seen in those with Charcot Marie Tooth Disease Type 1A than for controls (p = 0.005 and p < 0.001, respectively). Lane control variability was 10% higher for the individual group and correlated with the neuropathy score (rS = 0.518, p = 0.040), specifically sensory loss (rS = 0.710, p = 0.002) and pinprick sensation loss in the leg (rS = 0.490, p = 0.054).
Journal Article

Driveline Ratio Selection and Shift Map Optimization for Automatic Transmission Vehicle at Concept Phase through Simulations

2017-10-08
Abstract Traditionally driveline ratios are selected based on trial and error method of proto vehicle testing. This consumes lot of time and increases overall vehicle development effort. Over last few decades, simulation-based design approach has been extensively used to alleviate this problem. This paper describes torque converter and final drive ratio (FDR) selection at concept phase for new Automatic Transmission (AT) vehicle development. Most of the critical data required for simulating vehicle performance and fuel economy (FE) targets were not available (e.g. shift map, clutch slip map, pedal map, dynamic torque, coast down, etc.) at an initial stage of the project. Hence, the risk for assuming right inputs and properly selecting FDR/Torque converter was particularly high. Therefore, a validated AVL Cruise simulation model based on an existing AT vehicle was used as a base for new AT vehicle development to mitigate the risk due to non-availability of inputs.
Journal Article

Improvement in Gear Shift Comfort by Reduction in Double Bump Force of Passenger Vehicles

2017-10-08
Abstract In today’s competitive automobile market, driver comfort is at utmost importance and the bar is being raised continuously. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gear can result into customer dissatisfaction and will impact the brand image. While there are continual efforts being taken by most of the car manufactures, “Double Bump” in gearshift has remained as a pain area and impact severely on the shift feel. This is more prominent in North-South (N-S) transmissions. In this paper ‘Double Bump’ is a focus area and a mathematical / analytical approach is demonstrated by analyzing ‘impacting parameters’ and establishing their co-relation with double bump. Additionally, the results are also verified with a simulation model.
Journal Article

Study of Wedge-Actuated Continuously Variable Transmission

2021-08-23
Abstract The mechanical efficiency of the current continuously variable transmission (CVT) suffers from high pump loss induced by a high-pressure system. A novel wedge mechanism is designed into the CVT clamp actuation system to generate the majority of clamp force mechanically. Therefore, the hydraulic system can operate at a low-pressure level most of the time, and the pump loss is greatly reduced to improve the CVT’s mechanical efficiency. Through dynamic analysis and design optimization, 90% of clamp force is contributed by the wedge mechanism and the rest of the 10% is generated by a conventional hydraulic system. The optimal design is validated through dynamic modeling using Siemens Virtual.Lab software by simulating the wedge clamp force generation, ratio change dynamics, and system response under tip-in conditions. After that, we built prototype components that target 70% of the clamp force contributed by the wedge mechanism and tested them on a transmission dynamometer.
Journal Article

A Framework for Characterizing the Initial Thermal Conditions of Light-Duty Vehicles in Response to Representative Utilization Patterns, Ambient Conditions, and Vehicle Technologies

2021-04-07
Abstract It is widely understood that the thermal state of a light-duty vehicle at the beginning of a trip influences the vehicle performance throughout the drive cycle. Cold starts, or initial states with component temperatures near ambient conditions, are strongly correlated with reduced vehicle performance and energy efficiency and increased emissions. Despite this understanding, there is little literature available that characterizes initial thermal states beyond empirical studies and simplified analyses of dwell times. We introduce a framework that considers vehicle activity patterns, including the previous drive event, duration of the previous dwell event, and relevant ambient conditions occurring during these events. Moreover, the framework allows for technologies to influence the prominence of cold starts and warm starts.
Journal Article

Torque and Pressure CFD Correlation of a Torque Converter

2019-08-22
Abstract A torque converter was instrumented with 29 pressure transducers inside five cavities under study (impeller, turbine, stator, clutch cavity between the pressure plate and the turbine shell). A computer model was created to establish correlation with measured torque and pressure. Torque errors between test and simulation were within 5% and K-Factor and torque ratio errors within 2%. Turbulence intensity on the computer model was used to simulate test conditions representing transmission low and high line pressure settings. When turbulence intensity was set to 5%, pressure simulation root mean square errors were within 11%-15% for the high line pressure setting and up to 34% for low line pressure setting. When turbulence intensity was increased to 50% for the low line pressure settings, a 6% reduced root mean square error in the pressure simulations was seen.
Journal Article

Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks

2018-04-17
Abstract The development, analysis, and optimization of battery electric class-7 heavy-duty trucks equipped with multi-speed transmissions are discussed in this paper. The designs of five new traction motors-fractional-slot, concentrated winding machines-are proposed for use in heavy-duty electric trucks. The procedure for gear-ratio range selection is outlined and ranges of gear ratios for three-to six-speed transmission powertrains are calculated for each of the proposed electric traction motors. The simulation and gear-ratio optimization tasks for class-7 battery electric trucks are formulated. The energy consumption of the e-truck with the twenty possible powertrain combinations is minimized over the four driving cycles and the most efficient powertrain layouts that meet the performance criteria are recommended.
Journal Article

Evaluation of Workload and Performance during Primary Flight Training with Motion Cueing Seat in an Advanced Aviation Training Device

2020-05-08
Abstract The use of simulation is a long-standing industry standard at every level of flight training. Historically, given the acquisition and maintenance costs associated with such equipment, full-motion devices have been reserved for advanced corporate and airline training programs. The Motion Cueing Seat (MCS) is a relatively inexpensive alternative to full-motion flight simulators and has the potential to enhance the fixed-base flight simulation in primary flight training. In this article, we discuss the results of an evaluation of the effect of motion cueing on pilot workload and performance during primary instrument training. Twenty flight students and instructors from a collegiate flight training program participated in the study. Each participant performed three runs of a basic circuit using a fixed-base Advanced Aviation Training Device (AATD) and an MCS.
X